
International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 70-73

Published Online June 2023 in IJEAST (http://www.ijeast.com)

70

VEHICLE DETECTION AND TRACKING
SYSTEM

Abhay Lohani, Yash Tyagi, Anubhav Jindal
Student,

Computer Science and Engineering, HMRITM, Delhi, India

Veerendra Yadav

Professor,
Department of Computer Science and Engineering HMRITM, Delhi, India

Abstract: The primary objective of this research is to design
and implement an automated system for detecting vehicles
from video footage, and estimating their speeds without the
use of sensors. Object detection is a challenging task in
computer vision that involves identifying and locating ob-
jects within an image or video. The proposed system begins
by capturing the initial frame through a webcam, which
serves as the reference frame. The system then calculates
the phase difference between the reference frame and sub-
sequent frames to detect movement. This refined frame is
referred to as the threshold frame. Through the use of ad-
vanced image processing techniques such as shadow re-
moval, dilation, and contouring, larger objects are identi-
fied within the threshold frame. This project also involves
estimating the speed of vehicles using image processing
techniques.

Keywords: Background Subtraction, roi Extraction,
Thresholding, Morphological Operations, Contours, Object
Tracking, Euclidean Distance.

I. INTRODUCTION

1.1 Value of a Vehicle Detection System in the Market
The use of vehicle detection and tracking technology plays a
crucial role in both civilian and military applications. These
include highway traffic control, management, and urban traffic
planning. The detection of vehicles on the road is crucial for
tasks such as tracking, counting, determining average speed,
traffic analysis, and categorizing vehicles. These processes can
be implemented in different environments and under varying
conditions. In this review, we provide a comprehensive sum-
mary of image processing techniques and analytical tools used
in traffic monitoring. With the advancement of technology,
monitoring traffic on busy roads is now less labor-intensive,
cost-effective, and time-efficient. The use of object detection
and tracking, behavioral analysis of traffic patterns, number
plate recognition, and surveillance on video streams produced
by traffic monitoring, can now be implemented on a large
scale, which was not possible earlier due to technical limita-
tions.

II. METHODOLOGY
2.1 Background Subtraction
Background subtraction is a technique used in computer vision
and image processing to separate the foreground objects from
the background in a video sequence. The main idea behind
background subtraction is to model the background of the sce-
ne and then subtract it from the current frame to obtain the
foreground objects.
We’ve used backgroundsubtractorMOG2 technique. MOG2
(Mixture of Gaussian Model version 2) is a background sub-
traction algorithm that uses a Gaussian Mixture Model (GMM)
to model the background of a video sequence. The GMM is a
probabilistic model that represents the background as a mixture
of Gaussian distributions. The MOG2 algorithm uses a two-
layer GMM to model the background, where the first layer
represents the background model, and the second layer repre-
sents the foreground model. The MOG2 algorithm works by
updating the GMM over time as new frames are processed. For
each pixel in the current frame, the algorithm calculates the
likelihood that the pixel belongs to the background or fore-
ground model using a likelihood ratio test. The background and
foreground models are then updated using a weighted average
of the previous models and the new pixel.
MOG2 algorithm has some advantages over other background
subtraction methods, such as: It is able to handle shadows and
highlights in the background, which is a common problem with
other background subtraction methods. It is able to adapt to
changes in the background over time, which makes it more
robust in dynamic environments. It is relatively fast and effi-
cient, which makes it suitable for real-time applications.

2.2 ROI Extraction
Roi = frame[0:900,0:2000] This line of code defines a Region
of Interest(ROI) from the given frame. This selects a rectangu-
lar region from the frame by specifying the starting and ending
indices for both the rows and columns. In this case, it is select-
ing rows from index 0 to index 900 (0:900) and columns from
index 0 to index 2000 (0:2000). The resulting region, roi, con-
tains the pixels from the original frame that fall within the
specified region, which is defined by the indices provided. It

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 70-73

Published Online June 2023 in IJEAST (http://www.ijeast.com)

71

means that it is creating a new image, which is a sub-image of
the original frame and the region of this sub-image is defined
by the rows between 0 and 900 and columns between 0 and
2000.
fgbg.apply(roi) - The apply() method is used to apply the back-
ground subtraction algorithm on the region of interest (ROI)
defined in the previous code. It means that the algorithm is
applied on the ROI of the frame, which is defined by the rows
between 0 and 900 and columns between 0 and 2000. The algo-
rithm will update the background model and will identify the
foreground objects in the given ROI.

2.3 Thresholding
cv2.threshold(fgmask,200, 255, cv2.THRESH_BINARY) It
applies a threshold operation on the input image (fgmask) to
create a binary image. It takes in the input image, a threshold
value, and a maximum value, and returns a binary image where
pixels with intensity values greater than the threshold are set to
the maximum value. In this case, it is thresholding the fgmask
image with a threshold value of 200, and setting all pixels
greater than 200 to 255. The fourth argument
cv2.THRESH_BINARY is a flag that specifies the type of
thresholding to be applied. In this case, it is a binary threshold-
ing, where the pixels are either 0 or 255, depending on whether
their intensity value is above or below the threshold.
The function returns the threshold value that was used and the
thresholded image. This thresholded image contains only black
and white pixels, where black pixels represent the background
and white pixels represent the foreground objects.

2.4 Morphological operations
Erosion: It is a morphological operation that involves eroding
the boundaries of an object in an image. This is typically done
by using a structuring element, which is a small matrix of pix-
els, to scan over the image. Pixels in the object that are not
surrounded by pixels in the structuring element are removed,
resulting in a shrinkage of the object. Erosion is often used in
image processing to remove noise or to separate touching ob-
jects.
Dilation: It is a morphological operation that increases the size
of the elements in a binary image. It is used to expand the
boundaries of the objects in the image by adding pixels to the
edges of the objects. The process is performed by moving a
structuring element (a small matrix of pixels) over the image
and replacing each pixel in the image with the maximum value
of the pixels in the structuring element that overlaps with that
pixel. This operation is typically used to fill in small holes or
gaps in objects, or to connect separate objects that are close
together.
cv2.morphology Ex(imBin, cv2.MORPH_OPEN, kernalOp) :
It applies a morphological operation on the input image (im-
Bin) using the structuring element (kernalOp). It is used to
perform morphological operations such as erosion, dilation,
opening, and closing on an image.

The first argument is the input image, the second argument is
the morphological operation to be performed and the third ar-
gument is the structuring element, which is a matrix of 1s and
0s that defines the shape of the element used for the morpho-
logical operation. In this case, it is performing an opening op-
eration on the input image "imBin" using the structuring ele-
ment "kernel Op". Opening is an erosion operation followed by
a dilation operation. It's used to remove noise from the image
and to make small holes disappear. It means that the algorithm
is performing opening operation on the binary image obtained
by thresholding the foreground mask, which is the result of the
background subtraction. This operation is used to remove noise
and small holes from the image.
cv2.morphologyEx(mask1,cv2.MORPH_CLOSE, kernalCl) : It
applies a morphological operation called "closing". The first
argument, mask1, is the input binary image on which the op-
eration is performed. The second argument, cv2.
MORPH_CLOSE, specifies the type of operation to be per-
formed. In this case, the operation is closing, which is a combi-
nation of dilation and erosion. The third argument, kernalCl, is
the structuring element, or kernel, used for the operation. The
kernel defines the shape of the neighborhood over which the
operation is performed. In closing operation, it first applies
dilation operation and then erosion operation. Together, they
can be used to remove small holes or gaps in objects, or to
connect separate objects that are close together.

2.5 Find Contours
cv2.findContours
(e_img,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
The first argument, e_img, is the input binary image, which is
typically the result of a thresholding or edge detection opera-
tion. The second argument, cv2.RETR_TREE, specifies the
contour retrieval mode. In this case, it is set to cv2.
RETR_TREE, which retrieves all of the contours and organizes
them into a full hierarchy. The third argument, cv2.
CHAIN_APPROX_SIMPLE, specifies the contour approxima-
tion method. In this case, it is set to cv2.
CHAIN_APPROX_SIMPLE, which compresses horizontal,
diagonal, and vertical segments and leaves only their end
points. The function returns two values, the first one is a list of
contours, where each contour is represented by a list of (x, y)
coordinates of the boundary points of the object. The second
one is hierarchy, which describes the topological relationship
between the contours. After this, we iterate through a list of
contours, and for each contour, following actions are per-
formed:
1. Calculating the area of the contour using the cv2. contour
Area() function.
2. Checking if the area of the contour is greater than a certain
threshold (in our case, 1000). If the area is greater than the
threshold, it proceeds to the next step. If the area is not greater
than the threshold, it moves on to the next contour.
3. Calculating the bounding rectangle of the contour using the
cv2.boundingRect() function. The bounding rectangle is repre-

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 70-73

Published Online June 2023 in IJEAST (http://www.ijeast.com)

72

sented by the coordinates of the top-left corner (x, y) and the
width and height (w, h) of the rectangle.
4. Drawing a green rectangle around the object using the cv2.
rectangle() function. The first argument is the image on which
the rectangle is drawn (in this case, the "roi" image), the second
argument is the top-left corner of the rectangle, the third argu-
ment is the bottom-right corner of the rectangle, the fourth
argument is the color of the rectangle (in this case, green) and
the last argument is the thickness of the rectangle lines.
5. Appending the bounding rectangle coordinates (x, y, w, h) to
a list called "detections".

2.6 Object Tracking
In this, the tracker object is updated with new detection data
and then it loops through the identified objects (boxes_ids) to
draw a rectangle around them on the image (roi). It also checks
the number of detections for each object, as well as the number
of detections for each object, and it also uses a limit to check if
the number of detections exceed the limit and it will change the
color of the rectangle. It also calls the capture function of the
tracker object with the object's current position and size, as
well as the number of detections.

2.7 Euclidean Distance
It is used to track the objects across multiple frames, while the
time difference between two lines is used to calculate the speed
of the objects. This implementation is used to track the vehicles
and calculate their speeds. We made an 'update' method which
iterates through the rectangles of the detected objects in con-
secutive frames. For each rectangle, it finds the center point of
the object and then calculates the Euclidean distance between
the center point of the new object and the center point of the
previously detected objects. If the distance is less than 70, it
means the object has already been detected in the previous
frame, and the center point of the object is updated. If the dis-
tance is greater than 70, it means the object is new and a new id
is assigned to the object and the center point of the object is
added to the 'center_points' dictionary.
As for speed calculation, we made a 'getsp' function which
takes in one parameter 'id' and returns the speed of the object
by dividing a constant value(214.15) by the time difference
between the two lines. In the 'update' method, the time of the
object crossing two specific lines (s1, s2) is stored in 's1' and
's2' arrays respectively. The time difference (s) between the two
lines is calculated and stored in 's' array. By dividing a constant
value by the time difference, the speed of the object is calculat-
ed.

Fig. 1.Vehicle Speed Normal and Exceeded

The above image showing 2 vehicles with different speeds and
color of their bounding box. The green one isn’t calculated yet
as the speed will get calculated after crossing the upper line.
The orange box vehicle speed is more than the speed limit,
hence, difference in color.

2.8 Saving Vehicle Data
For saving vehicle data i.e, vehicle id, speed and license plate
number, we defined a method called "capture". It takes in sev-
eral parameters:
self: the instance of the class that this method is being called on
img: an image (presumably in the form of a numpy array)
x, y, h, w: integers representing coordinates and dimensions of
a rectangular region within the image
sp: an integer representing a speed value
id: an identifier for the object(vehicle)
The method first checks if a certain flag (self.capf[id]) is equal
to 0. If it is, the flag is set to 1, another flag (self.f[id]) is set to
0, and a region of the image is cropped using the x, y, h, and w
values.

Fig. 2.Saved Vehicle Images

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 70-73

Published Online June 2023 in IJEAST (http://www.ijeast.com)

73

This cropped image is then saved to a file (as you can see in the
above image) with a specific naming format that includes the id
and speed. Next, the method opens a file to write speed rec-
ords, and checks if the speed (sp) is greater than a certain limit.
If it is, the cropped image is saved to a different directory and
the OCR(Optical Character Recognition) is applied to the im-
age to extract the text from the image (license plate number)
and the id, speed, and text are written to the file along with a
message that the speed was exceeded. If the speed is not ex-
ceeded, only the id and speed are written to the file. Lastly, the
method closes the file and increments a count of the total num-
ber of captures. It also increments a count of the number of
captures where the speed was exceeded (if applicable).

2.9 Result
In this paper we have detected the vehicles with object detec-
tion algorithm and background subtraction and thresholding
techniques and used mathematical calculation of Euclidean
distance tracking algorithm for calculating speed of the vehicle
and extracted the license plate number using OCR text recogni-
tion algorithm and saved the images of vehicles in the database
with their speeds. Our method showed high accuracy and effi-
ciency and can be used in traffic surveillance.

III. REFERENCES
[1]. Parin, P. and Pandi, G.Vehicle detection in traffic

monitoring with machine learning - IJCRT. Available
at: https://ijcrt.org/papers/IJCRT1807095.pdf. (2018).

[2]. Kandalkar, P.A. and Dhok, G.P. Review on Image
Processing Based Vehicle Detection & tracking ... -
IJSRST. Available at:
https://ijsrst.com/paper/1709.pdf. (2017).

[3]. Marode, A. et al. Available at:
https://www.irjmets.com/uploadedfiles/paper/volume3
/issue_5_may_2 021/9973/1628083400.pdf. (2021).

[4]. Rad, A.G., Dehghani, A. and Karim, M.R. Vehicle
speed detection in video image sequences using CVS
 method. Available at:
https://www.researchgate.net/publication/266215176_
Vehi-
cle_speed_detection_in_video_image_sequences_usin
g_CVS_method. (2010).

[5]. Cao, Y. et al. Research on vehicle detection and track-
ing algorithm based on the methods of frame differ-
ence and adaptive background subtraction difference|
Atlantis Press. Available at: https://www.atlantis-
press.com/proceedings/aiie-16/25866334.(2016).

[6]. Zhu, Q.; Li, H. and Guo, W. Research on Vehicle De-
tection and Direction Determinationbased on Deep
 Learning.Available at:
https://www.scitepress.org/PublicationsDetail.aspx?ID
=/o+VOkKTY Z8=&t=1.(2020).

[7]. Dwivedi, H. et al. Speed detection software, Interna-
tional Journal of Engineering Research & Technology.

Available at: https://www.ijert.org/speed-detection-
software.(2021).

https://ijcrt.org/papers/IJCRT1807095.pdf
https://ijsrst.com/paper/1709.pdf
https://www.irjmets.com/uploadedfiles/paper/volume3/issue_5_may_2%20021/9973/1628083400.pdf
https://www.irjmets.com/uploadedfiles/paper/volume3/issue_5_may_2%20021/9973/1628083400.pdf
https://www.researchgate.net/publication/266215176_Vehicle_speed_detection_in_video_image_sequences_using_CVS_method
https://www.researchgate.net/publication/266215176_Vehicle_speed_detection_in_video_image_sequences_using_CVS_method
https://www.researchgate.net/publication/266215176_Vehicle_speed_detection_in_video_image_sequences_using_CVS_method
https://www.researchgate.net/publication/266215176_Vehicle_speed_detection_in_video_image_sequences_using_CVS_method
https://www.atlantis-press.com/proceedings/aiie-16/25866334
https://www.atlantis-press.com/proceedings/aiie-16/25866334

	I. INTRODUCTION
	1.1 Value of a Vehicle Detection System in the Market

	II. METHODOLOGY
	2.1 Background Subtraction
	2.2 ROI Extraction
	2.3 Thresholding
	2.4 Morphological operations
	2.5 Find Contours
	2.6 Object Tracking
	2.7 Euclidean Distance
	2.8 Saving Vehicle Data
	2.9 Result

	III. REFERENCES

